
Usage, Costs, and Benefits of Continuous Integration
in Open-Source Projects

Michael Hilton
Oregon State University, USA

hiltonm@eecs.oregonstate.edu

Timothy Tunnell
University of Illinois, USA

tunnell2@illinois.edu

Kai Huang
University of Illinois, USA

khuang29@illinois.edu

Darko Marinov
University of Illinois, USA

marinov@illinois.edu

Danny Dig
Oregon State University, USA

digd@eecs.oregonstate.edu

ABSTRACT
Continuous integration (CI) systems automate the compila-
tion, building, and testing of software. Despite CI rising as
a big success story in automated software engineering, it has
received almost no attention from the research community.
For example, how widely is CI used in practice, and what are
some costs and benefits associated with CI? Without answer-
ing such questions, developers, tool builders, and researchers
make decisions based on folklore instead of data.

In this paper, we use three complementary methods to
study the usage of CI in open-source projects. To understand
which CI systems developers use, we analyzed 34,544 open-
source projects from GitHub. To understand how developers
use CI, we analyzed 1,529,291 builds from the most commonly
used CI system. To understand why projects use or do not
use CI, we surveyed 442 developers. With this data, we
answered several key questions related to the usage, costs,
and benefits of CI. Among our results, we show evidence that
supports the claim that CI helps projects release more often,
that CI is widely adopted by the most popular projects, as
well as finding that the overall percentage of projects using
CI continues to grow, making it important and timely to
focus more research on CI.

CCS Concepts
•Software and its engineering → Agile software develop-
ment; Software testing and debugging;

Keywords
continuous integration; mining software repositories

1. INTRODUCTION
Continuous Integration (CI) is emerging as one of the

biggest success stories in automated software engineering.
CI systems automate the compilation, building, testing and

deployment of software. For example, such automation has
been reported [22] to help Flickr deploy to production more
than 10 times per day. Others [40] claim that by adopting
CI and a more agile planning process, a product group at
HP reduced development costs by 78%.

These success stories have led to CI growing in interest
and popularity. Travis CI [17], a popular CI service, reports
that over 300,000 projects are using Travis. The State of
Agile industry survey [48], with 3,880 participants, found
50% of respondents use CI. The State of DevOps report [49]
finds CI to be one of the indicators of ”high performing IT
organizations”. Google Trends [11] shows a steady increase of
interest in CI: searches for“Continuous Integration” increased
350% in the last decade.

Despite the growth of CI, the only published research paper
related to CI usage [53] is a preliminary study, conducted
on 246 projects, which compares several quality metrics of
projects that use or do not use CI. However, the study does
not present any detailed information on how projects use CI.
In fact, despite some folkloric evidence about the use of CI,
there is no systematic study about CI systems.

Not only do we lack basic knowledge about the extent to
which open-source projects are adopting CI, but also we have
no answers to many important questions related to CI. What
are the costs of CI? Does CI deliver on the promised benefits,
such as releasing more often, or helping make changes (e.g.,
to merge pull requests) faster? Do developers maximize the
usage of CI? Despite the widespread popularity of CI, we
have very little quantitative evidence on its benefits. This
lack of knowledge can lead to poor decision making and
missed opportunities. Developers who choose not to use CI
can be missing out on the benefits of CI. Developers who do
choose to use CI might not be using it to its fullest potential.
Without knowledge of how CI is being used, tool builders
can be misallocating resources instead of having data about
where automation and improvements are most needed by
their users. By not studying CI, researchers have a blind
spot which prevents them from providing solutions to the
hard problems that practitioners face.

In this paper we use three complementary methods to study
the usage of CI in open-source projects. To understand the
extent to which CI has been adopted by developers, and
which CI systems developers use, we analyzed 34,544 open-
source projects from GitHub. To understand how developers
use CI, we analyzed 1,529,291 builds from Travis CI, the most
commonly used CI service for GitHub projects (Section 4.1).



To understand why projects use or do not use CI, we surveyed
442 developers.

With this data, we answer several research questions that
we grouped into three themes:

Theme 1: Usage of CI
RQ1: What percentage of open-source projects use CI?
RQ2: What is the breakdown of usage of different CI ser-
vices?
RQ3: Do certain types of projects use CI more than others?
RQ4: When did open-source projects adopt CI?
RQ5: Do developers plan on continuing to use CI?
We found that CI is widely used, and the number of projects
which are adopting CI is growing. We also found that the
most popular projects are most likely to use CI.

Theme 2: Costs of CI
RQ6: Why do open-source projects choose not to use CI?
RQ7: How often do projects evolve their CI configuration?
RQ8: What are some common reasons projects evolve their
CI configuration?
RQ9: How long do CI builds take on average?
We found that the most common reason why developers are
not using CI is lack of familiarity with CI. We also found that
the average project makes only 12 changes to their CI con-
figuration file and that many such changes can be automated.

Theme 3: Benefits of CI
RQ10: Why do open-source projects choose to use CI?
RQ11: Do projects with CI release more often?
RQ12: Do projects which use CI accept more pull requests?
RQ13: Do pull requests with CI builds get accepted faster
(in terms of calendar time)?
RQ14: Do CI builds fail less on master than on other non-
master branches?
We first surveyed developers about the perceived benefits of
CI, then we empirically evaluated these claims. We found
that projects that use CI release twice as often as those that
do not use CI. We also found that projects with CI accept
pull requests faster than projects without CI.

This paper makes the following contributions:

1. Research Questions: We designed 14 novel research
questions. We are the first to provide in-depth answers
to questions about the usage, costs, and benefits of CI.

2. Data Analysis: We collected and analyzed CI us-
age data from 34,544 open-source projects. Then we
analyzed in-depth all CI data from a subset of 620
projects and their 1,529,291 builds, 1,503,092 commits,
and 653,404 pull requests. Moreover, we surveyed 442
open-source developers about why they chose to use or
not use CI.

3. Implications: We provide practical implications of
our findings from the perspective of three audiences:
researchers, developers, and tool builders. Researchers
should pay attention to CI because it is not a passing
fad. For developers we list several situations where
CI provides the most value. Moreover, we discovered
several opportunities where automation can be helpful
for tool builders.

More details about our data sets and results are available
at http://cope.eecs.oregonstate.edu/CISurvey

2. OVERVIEW OF CI

2.1 History and Definition of CI
The idea of Continuous Integration (CI) was first intro-

duced in 1991 by Grady Booch [26], in the context of object-
oriented design: “At regular intervals, the process of contin-
uous integration yields executable releases that grow in func-
tionality at every release...” This idea was then adopted as
one of the core practices of Extreme Programming (XP) [23].

However, the idea began to gain acceptance after a blog
post by Martin Fowler [37] in 2000. The motivating idea
of CI is that the more often a project can integrate, the
better off it is. The key to making this possible, according
to Fowler, is automation. Automating the build process
should include retrieving the sources, compiling, linking, and
running automated tests. The system should then give a “yes”
or “no” indicator of whether the build was successful. This
automated build process can be triggered either manually or
automatically by other actions from the developers, such as
checking in new code into version control.

These ideas were implemented by Fowler in CruiseCon-
trol [9], the first CI system, which was released in 2001.
Today there are over 40 different CI systems, and some of
the most well-known ones include Jenkins [12] (previously
called Hudson), Travis CI [17], and Microsoft Team Founda-
tion Server (TFS) [15]. Early CI systems usually ran locally,
and this is still widely done for Jenkins and TFS. However,
CI as a service has become more and more popular, e.g.,
Travis CI is only available as a service, and even Jenkins is
offered as a service via the CloudBees platform [6].

2.2 Example Usage of CI
We now present an example of CI that comes from our

data. The pull request we are using can be found here:
https://github.com/RestKit/RestKit/pull/2370. A devel-
oper named “Adlai-Holler” created pull request #2370 named
“Avoid Flushing In-Memory Managed Object Cache while
Accessing” to work around an issue titled “Duplicate objects
created if inserting relationship mapping using RKInMemo-
ryManagedObjectCache” for the project RestKit [13]. The
developer made two commits and then created a pull request,
which triggered a Travis CI build. The build failed, because
of failing unit tests. A RestKit project member,“segiddins”,
then commented on the pull request, and asked Adlai-Holler
to look into the test failures. Adlai-Holler then committed
two new changes to the same pull request. Each of these
commits triggered a new CI build. The first build failed, but
the second was successful. Once the CI build passed, the
RestKit team member commented “seems fine” and merged
the pull request.

3. METHODOLOGY
To understand the extent to which CI is used and which

CI systems developers use, we analyzed 34,544 open-source
projects from GitHub with our breadth corpus. To understand
how developers use CI, we analyzed 1,529,291 builds on the
most popular CI system in our depth corpus. To understand
why projects use or do not use CI, we surveyed 442 developers.



3.1 Breadth Corpus
The breadth corpus has a large number of projects, and

information about what CI services each project uses. We use
the breadth corpus to answer broad questions about the usage
of CI in open-source projects. We collected the data for this
corpus primarily via the GitHub API. We first sorted GitHub
projects by their popularity, using the star rating (whereby
users can mark, or “star”, some projects that they like, and
hence each project can accumulate stars). We started our
inspection from the top of the list, first by manually looking
at the top 50 projects. We collected all publicly available
information about how these projects use CI. We then used
what we learned from this manual inspection to write a
script to programmatically classify which CI service (if any)
a project uses. The four CI services that we were able to
readily identify manually and later by our script are (sorted
in the order of their usage): Travis CI [17], CircleCI [5],
AppVeyor [2], and Werker [18]. All of these services provide
public API’s which we queried to determine if a project is
using that service.

Moreover, we wanted to ensure that we had collected as
complete data as possible. When we examined the data
by hand, we found that several projects were using Cloud-
Bees [6], a CI service powered by the Jenkins CI. However,
given a list of GitHub projects, there is no reliable way
to programmatically identify from the GitHub API which
projects use CloudBees. (In contrast, Travis CI uses the
same organization and project names as GitHub, making it
easy to check correspondence between Travis CI and GitHub
projects.) We contacted CloudBees, and they sent us a list
of open-source projects that have CloudBees build set up.
We then wrote a script to parse that list, inspect the build
information, and search for the corresponding GitHub repos-
itory (or repositories) for each build on CloudBees. We then
used this data to identify the projects from our breadth cor-
pus that use CloudBees. This yielded 1,018 unique GitHub
repositories/projects. To check whether these projects refer
to CloudBees, we searched for (case insensitive) “CloudBees”
in the README files of these projects and found that only
256 of them contain “CloudBees”. In other words, had we
not contacted CloudBees directly, using only the information
available on GitHub, we would have missed a large number
of projects that use CloudBees.

Overall, the breadth corpus consists of 34,544 projects. For
each project, we collected the following information: project
name and owner, the CI system(s) that the project uses (if
any), popularity (as measured by the number of stars), and
primary programming language (as determined by GitHub).

3.2 Depth Corpus
The depth corpus has fewer projects, but for each project

we collect all the information that is publicly available. For
this subset of projects, we collected additional data to gain a
deeper understanding of the usage, costs, and benefits of CI.
Analyzing our breadth corpus, as discussed in Section 4.1,
we learned that Travis CI is by far the most commonly
used CI service among open-source projects. Therefore, we
targeted projects using Travis CI for our depth corpus. First,
we collected the top 1,000 projects from GitHub ordered
by their popularity. Of those 1,000 projects, we identified
620 projects that use Travis CI, 37 use AppVeyor, 166 use

CircleCI, and 3 use Werker. We used the Travis CI API1 to
collect the entire build history for each project in our depth
corpus, for a total of 1,529,291 builds. Using GHTorrent [39],
we collected the full history of pull requests for each project,
for a total of 653,404 pull requests. Additionally, we cloned
every project in our corpus, to access the entire commit
history and source code.

3.3 Survey
Even after collecting our diverse breadth and depth cor-

pora, we were still left with questions that we could not
answer from the online data alone. These questions were
about why developers chose to use or not use CI. We designed
a survey to help us answer a number of such “why” ques-
tions, as well as to provide us another data source to better
understand CI usage. We deployed our survey by sending
it to all the email addresses publicly listed as belonging to
the organizations of all the top 1,000 GitHub projects (again
rated by the popularity). In total, we sent 4,508 emails.

Our survey consisted of two flows, each with three ques-
tions. The first question in both flows asked if the participant
used CI or not. Depending on the answer they gave to this
question, the second question asked the reasons why they
use or do not use CI. These questions were multiple-choice,
multiple-selection questions where the users were asked to
select all the reasons that they agreed with. To populate
the choices, we collected some common reasons for using or
not using CI, as mentioned in websites [1, 7], blogs [3, 8, 19],
and Stack Overflow [14]. Optionally, the survey participants
could also write their own reason(s) that we did not already
list. The third question asked if the participant plans on
using CI for future projects.

To incentivize participation, we raffled off a 50 USD gift
card among the survey respondents. 442 (9.8% response rate)
participants responded to our survey. Of those responses,
407 (92.1%) indicated that they do use CI, and 35 (7.9%)
indicated that they do not use CI.

4. RESULTS
In this section, we present the results to our research ques-

tions. Section 4.1 presents the results about the usage of
CI. Section 4.2 discusses the costs of CI. Finally Section 4.3
presents the benefits of CI. Rather than presenting impli-
cations after each research question, we draw from several
research questions to triangulate implications that we present
in Section 5.

4.1 Usage of CI
To determine the extent to which CI is used, we study

what percentage of projects actively use CI, and we also ask
developers if they plan to use CI in the future. Furthermore,
we study whether the project popularity and programming
language correlate with the usage of CI.
RQ1: What percentage of open-source projects use CI?

We found that 40% of all the projects in our breadth corpus
use CI. Table 1 shows the breakdown of the usage. Thus,
CI is indeed used widely and warrants further investigation.

1We are grateful to the Travis CI developers for promptly
resolving a bug report that we submitted; prior to them
resolving this bug report, one could not query the full build
history of all projects.



Table 1: Breadth corpus projects CI usage
Project Uses CI? Percentage Number of Projects
Yes 40.27% 13,910
No 59.73% 20,634

Additionally, we know that our scripts do not find all CI
usage (e.g., projects that run privately hosted CI systems,
as discussed further in Section 6.2). We can reliably detect
the use of (public) CI services only if their API makes it
possible to query the CI service based on knowing the GitHub
organization and project name. Therefore, the results we
present are a lower bound on the total number of projects
that use CI.

Table 2: CI usage by Service. The top row shows
percent of all CI projects using that service, the sec-
ond row shows the total number of projects for each
service. Percents add up to more than 100 due to
some projects using multiple CI services.

Usage by CI Service
Travis CircleCI AppVeyor CloudBees Werker
90.1% 19.1% 3.5% 1.6% 0.4%
12528 2657 484 223 59

RQ2: What is the breakdown of usage of different CI ser-
vices?

Next we investigate which CI services are the most widely
used in our breadth corpus. Table 2 shows that Travis CI
is by far the most widely used CI service. Because of this
result, we feel confident that our further analysis can focus
on the projects that use Travis CI as a CI service, and that
analyzing such projects gives representative results for usage
of CI services in open-source projects.

We also found that some projects use more than one CI
service. In our breadth corpus, of all the projects that use CI,
14% use more than one CI. We think this is an interesting
result which deserves future attention.
RQ3: Do certain types of projects use CI more than others?

To better understand which projects use CI, we look for
characteristics of projects that are more likely to use CI.

CI usage by project popularity: We want to deter-
mine whether more popular projects are more likely to use
CI. Our intuition is that if CI leads to better outcomes, then
we would expect to see higher usage of CI among the most
popular projects (or, alternatively, that projects using CI get
better and thus are more popular). Figure 1 shows that the
most popular projects (as measured by the number of stars)
are also the most likely to use CI (Kendall’s τ , p < 0.00001).
We group the projects from our breadth corpus into 64 even
groups, ordered by number of stars. We then calculate the
percent of projects in each group that are using CI. Each
group has around 540 projects. In the most popular (starred)
group, 70% of projects use CI. As the projects become less
popular, the percentage of projects using CI declines to 23%.

Observation

Popular projects are more likely to use CI.

CI usage by language: We now examine CI usage by
programming language. Are there certain languages for

Figure 1: CI usage of projects in GitHub. Projects
are sorted by popularity (number of stars).

which the projects written primarily in such languages use
CI more than others? Table 3 shows projects sorted by the
percentage of projects that use CI for each language, from
our breadth corpus. The data shows that in fact there are
certain languages that use CI more than others. Notice that
the usage of CI does not perfectly correlate with the number
of projects using that language (as measured by the number
of projects using a language, with its rank by percentage,
Kendall’s τ , p > 0.68). In other words, some of the languages
that use CI the most are both popular languages like Ruby
and emerging languages like Scala. Similarly, among projects
that use CI less, we notice both popular languages such as
Objective-C and Java, as well as less popular languages such
as VimL.

However, we did observe that many of the languages that
have the highest CI usage are also dynamically-typed lan-
guages (e.g., Ruby, PHP, CoffeeScript, Clojure, Python, and
JavaScript). One possible explanation may be that in the
absence of a static type system which can catch errors early
on, these languages use CI to provide extra safety.

Observation

We observe a wide range of projects that use CI. The
popularity of the language does not correlate with the
probability that a project uses CI.

RQ4: When did open-source projects adopt CI?
We next study when projects began to adopt CI. Figure 2
shows the number of projects using CI over time. We answer
this question with our depth corpus, because the breadth
corpus does not have the date of the first build, which we
use to determine when CI was introduced to the project.
Notice that we are collecting data from Travis CI, which was
founded in 2011 [10]. Figure 2 shows that CI has experienced
a steady growth over the last 5 years.

We also analyze the age of each project when developers
first introduced CI, and we found that the median time
was around 1 year. Based on this data, we conjecture that
while many developers introduce CI early in a project’s



Table 3: CI usage by programing language. For
each language, the columns tabulate: the number
of projects from our corpus that predominantly use
that language, how many of these projects use CI,
the percentage of projects that use CI.

Language Total Projects # Using CI Percent CI
Scala 329 221 67.17
Ruby 2721 1758 64.61
Go 1159 702 60.57
PHP 1806 982 54.37
CoffeeScript 343 176 51.31
Clojure 323 152 47.06
Python 3113 1438 46.19
Emacs Lisp 150 67 44.67
JavaScript 8495 3692 43.46
Other 1710 714 41.75
C++ 1233 483 39.17
Swift 723 273 37.76
Java 3371 1188 35.24
C 1321 440 33.31
C# 652 188 28.83
Perl 140 38 27.14
Shell 709 185 26.09
HTML 948 241 25.42
CSS 937 194 20.70
Objective-C 2745 561 20.44
VimL 314 59 18.79

development lifetime, it is not always seen as something
that provides a large amount of value during the very initial
development of a project.

Observation

The median time for CI adoption is one year.

RQ5: Do developers plan on continuing to use CI?
Is CI a passing “fad” in which developers will lose interest,
or will it be a lasting practice? While only time will tell
what the true answer is, to get some sense of what the future
could hold, we asked developers in our survey if they plan to
use CI for their next project. We asked them how likely they
were to use CI on their next project, using a 5-point Likert
scale ranging from definitely will use to definitely will not use.
Figure 3 shows that developers feel very strongly that they
will be using CI for their next project. The top two options,
’Definitely’ and ’Most Likely’, account for 94% of all our
survey respondents, and the average of all the answers was
4.54. While this seems like a pretty resounding endorsement
for the continued use of CI, we decided to dig a little deeper.
Even among respondents who are not currently using CI,
53% said that they would ’Definitely’ or ’Most Likely’ use
CI for their next project.

Observation

While CI is widely used in practice nowadays, we predict
that in the future, CI adoption rates will increase even
further.

4.2 Costs of CI
To better understand the costs of CI, we analyze both the

survey (where we asked developers why they believe CI is
too costly to be worth using) and the data from our depth

Figure 2: Number of projects using CI over time.
Data is tabulated by quarter (3 months) per year.

Figure 3: Answers to “Will you use CI for your next
project?”

corpus. We estimate the cost to developers for writing and
maintaining the configuration for their CI service. Specifi-
cally, we measure how often the developers make changes
to their configuration files and study why they make those
changes to the configuration files. We also analyze the cost
in terms of the time to run CI builds. Note that the time
that the builds take to return a result could be unproductive
time if the developers do not know how to proceed without
knowing that result.
RQ6: Why do open-source projects choose not to use CI?

One way to evaluate the costs of CI is to ask developers
why they do not use CI. In our survey, we asked respondents
whether they chose to use or not use CI, and if they indicated
that they did not, then we asked them to tell us why they
do not use CI.

Table 4 shows the percentage of the respondents who se-
lected particular reasons for not using CI. As mentioned
before, we built the list of possible reasons by collecting
information from various popular internet sources. Interest-
ingly, the primary cost that respondents identified was not
a technical cost; instead, the reason for not using CI was
that “The developers on my project are not familiar enough
with CI.” We do not know if the developers are not familiar
enough with the CI tools themselves (e.g., Travis CI), or if
they are unfamiliar with all the work it will take to add CI to
their project, including perhaps fully automating the build.
To completely answer this question, more research is needed.

The second most selected reason was that the project does
not have automated tests. This speaks to a real cost for CI, in



Table 4: Reasons developers gave for not using CI
Reason Percent
The developers on my project are not familiar enough with CI 47.00
Our project doesn’t have automated tests 44.12
Our project doesn’t commit often enough for CI to be worth it 35.29
Our project doesn’t currently use CI, but we would like to in the future 26.47
CI systems have too high maintenance costs (e.g., time, effort, etc.) 20.59
CI takes too long to set up 17.65
CI doesn’t bring value because our project already does enough testing 5.88

Figure 4: Number of changes to CI configs, median
number of changes is 12

that much of its value comes from automated tests, and some
projects find that developing good automated test suites is
a substantial cost. Even in the cases where developers had
automated tests, some questioned the use of CI (in particular
and regression testing in general); one respondent (P74) even
said “In 4 years our tests have yet to catch a single bug.”

Observation

The main reason why open-source projects choose to
not use CI is that the developers are not familiar enough
with CI.

RQ7: How often do projects evolve their CI configuration?
We ask this question to identify how often developers evolve
their CI configurations. Is it a “write-once-and-forget-it”
situation, or is it something that evolves constantly? The
Travis CI service is configured via a YAML [20] file, named
.travis.yml, in the project’s root directory. YAML is a human-
friendly data serialization standard. To determine how often
a project has changed its configuration, we analyzed the
history of every .travis.yml file and counted how many times
it has changed. We calculate the number of changes from the
commits in our depth corpus. Figure 4 shows the number of
changes/commits to the .travis.yml file over the life of the
project. We observe that the median of number of changes
to a project’s CI configuration is 12 times, but one of the
projects changed the CI configuration 266 times. This leads
us to conclude that many projects setup CI once and then
have minimal involvement (25% of projects have 5 or less
changes to their CI configuration), but some projects do find
themselves changing their CI setup quite often.

Observation

Some projects change their configurations relatively
often, so it is worthwhile to study what these changes
are.

Table 5: Reasons for CI config changes
Config Area Total Edits Percentage
Build Matrix 9718 14.70
Before Install 8549 12.93
Build Script 8328 12.59
Build Language Config 7222 10.92
Build Env 6900 10.43
Before Build Script 6387 9.66
Install 4357 6.59
Whitespace 3226 4.88
Build platform Config 3058 4.62
Notifications 2069 3.13
Comments 2004 3.03
Git Configuration 1275 1.93
Deploy Targets 1079 1.63
After Build Success 1025 1.55
After Build Script 602 0.91
Before Deploy 133 0.20
After Deploy 79 0.12
Custom Scripting 40 0.06
After Build Failure 39 0.06
After Install 14 0.02
Before Install 10 0.02
Mysql 5 0.01
After Build Success 3 0.00
Allow Failures 2 0.00

RQ8: What are some common reasons projects evolve their
CI configuration?

To better understand the changes to the CI configuration
files, we analyzed all the changes that were made to the
.travis.yml files in our depth corpus. Because YAML is a
structured language, we can parse the file and determine
which part of the configuration was changed. Table 5 shows
the distribution of all the changes. The most common changes
were to the build matrix, which in Travis specifies a combi-
nation of runtime, environment, and exclusions/inclusions.
For example, a build matrix for a project in Ruby could
specify the runtimes rvm 2.2, rvm 1.9, and jruby, the build
environment rails2 and rails3, and the exclusions/inclusions,
e.g., exclude: jruby with rails2. All combinations will be built
except those excluded, so in this example there would be
5 different builds. Other common changes included the de-
pendent libraries to install before building the project (what
.travis.yml calls before install) and changes to the build script
themselves. Also, many other changes were due to the version
changes of dependencies.



Figure 5: Build time distribution by result, in sec-
onds

Observation

Many CI configuration changes are driven by depen-
dency changes and could be potentially automated.

RQ9: How long do CI builds take on average?
Another cost of using CI is the time to build the application

and run all the tests. This cost represents both a cost of
energy2 for the computing power to run these builds, but
also developers may have to wait to see if their build passes
before they merge in the changes, so having longer build
times means more wasted developer time.

The average build time is just under 500 seconds. To
compute the average build times, we first remove all the can-
celed (incomplete, manually stopped) build results, and only
consider the time for errored, failed, and passed (completed
builds). Errored builds are those that occur before the build
begins (e.g., when a dependency cannot be downloaded),
and failed builds are those that the build is not completed
succesfully (e.g., a unit test fail). To further understand the
data, we look at each outcome independently. Interestingly,
we find that passing builds run faster than either errored
or failed builds. The difference between errored and failed
is significant (Wilcoxon, p < 0.0001), as is the difference
between passed and errored (Wilcoxon, p < 0.0001) and the
difference between passed and failed (Wilcoxon, p < 0.0001).

We find this result surprising as our intuition is that pass-
ing builds should take longer, because if an error state is
encountered early on, the process can abort and return earlier.
Perhaps it is the case that many of the faster running pass
builds are not generating a meaningful result, and should
not have been run. However, more investigation is needed to
determine what the exact reasons for this are.

4.3 Benefits of CI
We first summarize the most commonly touted benefits of

CI, as reported by the survey participants. We then analyze
empirically whether these benefits are quantifiable in our
depth corpus. Thus, we confirm or refute previously held
beliefs about the benefits of CI.

2This cost should not be underestimated; our personal cor-
respondence with a Google manager in charge of their CI
system TAP reveals that TAP costs millions of dollars just
for the computation (not counting the cost of developers who
maintain or use TAP).

RQ10: Why do open-source projects choose to use CI?
Having found that CI is widely used in open-source projects

(RQ1), and that CI is most widely used among the most
popular projects on GitHub (RQ3), we want to understand
why developers choose to use CI. However, why a project
uses CI cannot be determined from a code repository. Thus,
we answer this question using our survey data.

Table 6 shows the percentage of the respondents who
selected particular reasons for using CI. As mentioned before,
we build this list of reasons by collecting information from
various popular internet sources. The two most popular
reasons were “CI makes us less worried about breaking our
builds” and “CI helps us catch bugs earlier”. One respondent
(P371) added: “Acts like a watchdog. You may not run tests,
or be careful with merges, but the CI will. :)”

Martin Fowler [7] is quoted as saying “Continuous In-
tegration doesn’t get rid of bugs, but it does make them
dramatically easier to find and remove.” However, in our
survey, very few projects felt that CI actually helped them
during the debugging process.

Observation

Projects use CI because it helps them catch bugs early
and makes them less worried about breaking the build.
However, CI is not widely perceived as helpful with
debugging.

RQ11: Do projects with CI release more often?
One of the more common claims about CI is that it helps
projects release more often, e.g., CloudBees motto is “Deliver
Software Faster” [6]. Over 50% of the respondents from our
survey claimed it was a reason why they use CI. We analyze
our data to see if we can indeed find evidence that would
support this claim.

We found that projects that use CI do indeed release more
often than either (1) the same projects before they used CI
or (2) the projects that do not use CI. In order to compare
across projects and periods, we calculated the release rate
as the number of releases per month. Projects that use CI
average .54 releases per month, while projects that do not
use CI average .24 releases per month. That is more than
double the release rate, and the difference is statistically
significant (Wilcoxon, p < 0.00001). To identify the effect of
CI, we also compared, for projects that use CI, the release
rate both before and after the first CI build. We found that
projects that eventually added CI used to release at a rate of
.34 releases per month, well below the .54 rate at which they
release now with CI. This difference is statistically significant
(Wilcoxon, p < 0.00001).

Observation

Projects that use CI release more than twice as often
as those that do not use CI.

RQ12: Do projects which use CI accept more pull requests?
For a project that uses a CI service such as Travis CI,

when the CI server builds a pull request, it annotates the
pull request on GitHub with a visual cue such as a green check
mark or a red ‘X’ that shows whether the pull request was
able to build successfully on the CI server. Our intuition is
that this extra information can help developers better decide
whether or not to merge a pull request into their code. To
determine if this extra information indeed makes a difference,
we compared the pull request acceptance rates between pull



Table 6: Reasons for using CI, as reported by survey participants
Reason Percent
CI makes us less worried about breaking our builds 87.71
CI helps us catch bugs earlier 79.61
CI allows running our tests in the cloud, freeing up our personal machines 54.55
CI helps us deploy more often 53.32
CI makes integration easier 53.07
CI runs our tests in a real-world staging environment 46.00
CI lets us spend less time debugging 33.66

Table 7: Release rate of projects
Uses Travis Versions Released per Month
Yes .54
No .24

Table 8: Comparison of pull requests merged for pull
requests that had or did not have CI information

CI Usage % Pull Requests Merged
Using CI 23
Not Using CI 28

requests that have this CI information and pull requests that
do not have it, from the depth corpus. Note that projects
can exclude some branches from their repository to not run
on the CI server, so just because a project uses CI on some
branch, there is no guarantee that every pull request contains
the CI build status information.

Table 8 shows the results for this question. We found that
pull requests without CI information were 5pp more likely
to be merged than pull requests with CI information. Our
intuition of this result is that those 5pp of pull requests have
problems which are identified by the CI. By not merging
these pull requests, developers can avoid breaking the build.
This difference is statistically significant (Fisher’s Exact Test:
p < 0.00001). This also fits with our survey result that
developers say that using CI makes them less worried about
breaking the build. One respondent (P219) added that CI

“Prevents contributors from releasing breaking builds”. By not
merging in potential problem pull requests, developers can
avoid breaking their builds.

Observation

CI build status can help developers avoid breaking the
build by not merging problematic pull requests into
their projects.

RQ13: Do pull requests with CI builds get accepted faster
(in terms of calendar time)?
Once a pull request is submitted, the code is not merged until
the pull request is accepted. The sooner a pull request is
accepted, the sooner the code is merged into the project. In
the previous question, we saw that projects using CI accept
fewer (i.e., reject or ignore more) pull requests than projects
not using CI. In this question, we consider only accepted pull
requests, and ask whether there is a difference in the time it
takes for projects to accept pull requests with and without
CI. One reason developers gave for using CI is that it makes

Figure 6: Distribution of time to accept pull re-
quests, in hours

integration easier. One respondent (P183) added “To be more
confident when merging PRs”. If integration is easier, does it
then translate into pull requests being integrated faster?

Figure 6 shows the distributions of the time to accept pull
requests, with and without CI. To compute these results, we
select, from our depth corpus, all the pull requests that were
accepted, both with and without build information from the
CI server. The mean time with CI is 81 hours, but the median
is only 5.2 hours. Similarly, the mean time without CI is 140
hours, but the median is 6.8 hours. Comparing the median
time to accept the pull requests, we find that the median pull
request is merged 1.6 hours faster than pull requests without
CI information. This difference is statistically significant
(Wilcoxon, p < .0000001).

Observation

CI build status can make integrating pull requests faster.
When using CI, the median pull request is accepted 1.6
hours sooner.

Table 9: Percentage of builds that succeed by pull
request target

Pull Request Target Percent Passed Builds
Master 72.03
Other 65.36

RQ14: Do CI builds fail less on master than on other non-
master branches? The most popular reason that participants
gave for using CI was that it helps avoid breaking the build.
Thus, we analyze this claim in the depth corpus. Does the
data show a difference in the way developers use CI with
the master branch vs. with the other branches? Is there any
difference between how many builds fail on master vs. on the



other branches? Perhaps developers take more care when
writing a pull request for master than for another branch.

Table 9 shows the percentage of builds that pass in pull
requests to the master branch, compared to all other branches.
We found that pull requests are indeed more likely to pass
when they are on master.

Observation

CI builds on the master branch pass more often than
on the other branches.

5. IMPLICATIONS
We offer practical implications of our findings for researchers,

developers, and tool builders.

Researchers
RQ1, RQ3, RQ4, RQ5: CI is not a “fad” but is here to stay.
Because CI is widely used and more projects are adopting it,
and has not yet received much attention from the research
community, it is time for researchers to study its use and
improve it, e.g., automate more tasks (such as setting up CI).
We believe that researchers can contribute many improve-
ments to the CI process once they understand the current
state-of-the-practice in CI.

RQ2: Similarly with how GitHub has become the main gate-
way for researchers who study software, we believe Travis
CI can become the main gateway for researchers who study
CI. Travis offers a wealth of CI data, accessible via public
API. Therefore, researchers can maximize their impact by
studying a single system.

RQ7, RQ8: We found evidence of frequent evolution of CI
configuration files (similar evolution was found for Make-
files [21]), so researchers can focus on providing support for
safe automation of changes in configuration files, e.g., via
safe refactoring tools.

RQ8: We confirmed that continuously running CI takes a
non-trivial amount of time (and resources), so the testing
research community should investigate methods for faster
build and test, similar to the ongoing efforts on TAP at
Google [4, 33,34,51,52], Tools for Software Engineers (TSE)
at Microsoft [16], or regression testing [38,55].

RQ6, Table 4 : The most common reason why developers do
not use CI is unfamiliarity with CI, so there is tremendous
opportunity for providing educational resources. We call
upon university educators to enrich their software engineer-
ing curriculum to cover the basic concepts and tooling for CI.

Developers
RQ3, Table 3: The data shows that CI is more widely em-
braced by the projects that use dynamically typed languages
(e.g., 64% of 2721 Ruby projects use CI, compared with only
20% of 2745 Objective-C projects that use CI). To mitigate
the lack of a static type system, developers that use dynam-
ically typed languages should use CI to run tests and help
catch errors early on.

RQ13: Our analysis of the depth corpus shows that the
presence of CI makes it easier to accept contributions in
open-source projects, and this was also indicated by sev-

eral survey respondents, e.g., “CI gives external contributors
confidence that they are not breaking the project” (P310).
Considering other research [43] that reports a lack of diver-
sity in open-source projects, attracting new contributors is
desirable. Thus, projects that aim to diversify their pool of
contributors should consider using CI.

RQ7, RQ9: Because the average times for a single CI build
is fairly short, and CI configurations are maintainable, it
appears that the benefits of CI outweigh the costs. Thus,
developers should use CI for their projects.

RQ3, RQ11, RQ12, RQ14: The use of CI correlates with
positive outcomes, and CI has been adopted by the most
successful projects on GitHub, so developers should consider
CI as a best practice and should use it as widely as possible.

Tool Builders
RQ6: CI helps catching bugs, but not locating them. The
CI build logs often bury an important error message among
hundreds of lines of raw output. Thus, tool builders that
want to improve CI can focus on new ways to integrate fault-
localization techniques into CI.

RQ1, RQ7, RQ8: Despite wide adoption, there are many
projects that have yet to use CI. Tool builders could parse
build files [56], and then generate configuration files necessary
for CI. By automating this process, tool builders can lower
the entry barrier for developers who are unfamiliar with CI.

6. THREATS TO VALIDITY

6.1 Construct
Are we asking the right questions? We are interested in

assessing the usage of CI in open-source projects. To do this
we have focused on what, how, and why questions. We think
that these questions have high potential to provide unique
insight and value for different stakeholders: developers, tool
builders, and researchers.

6.2 Internal
Is there something inherent to how we collect and analyze

CI usage data that could skew the accuracy of our results?
Once a CI server is configured, it will continue to run until

it is turned off. This could result in projects configuring a
CI server, and then not taking into account the results as
they continue to do development. However, we think this
is unlikely because Travis CI and GitHub have such close
integration. It would be difficult to ignore the presence of
CI when there are visual cues all throughout GitHub when
a project is using CI.

Some CI services are run in a way such that they cannot
be detected from the information that is publicly available
in the GitHub repository. This means that we could have
missed some projects. However, this would mean that we are
underestimating the extent to which CI has been adopted.

Despite a 9.8% response rate to our survey, still over 90%
of our targeted population did not respond. We had no
control over who responded to our survey, so it may suffer
from self-selection bias. We think this is likely because 92%
of our survey participants reported using CI, much higher
than the percentage of projects we observed using CI in the
data. In order to mitigate this, we made the survey short



and provided a raffle as incentive to participate, to get the
most responses as possible.

6.3 External
Are our results generalizable for general CI usage? While

we analyzed a large number of open-source repositories, we
cannot guarantee that these results will be the same for
proprietary (closed-source) software. In fact, we consider it
very likely that closed-source projects would be unwilling to
send their source over the internet to a CI service, so our
intuition is that they would be much more likely to use a
local CI solution. Further work should be done to investigate
the usage of CI in closed-source projects.

Because we focused on Travis CI, it could be that other CI
services are used differently. As we showed in RQ2, Travis
CI was the overwhelming favorite CI service to use, so by
focusing on that we think our results are representative.

Additionally, we only selected projects from GitHub. Per-
haps open-source projects that have custom hosting also
would be more likely to have custom CI solutions. More
work is needed to determine if these results generalize.

7. RELATED WORK
We group our related work into three different areas: (i)

CI usage, (ii) CI technology, and (iii) related technology.
CI Usage The closest work to ours is by Vasilescu et al. [53]
who present two main findings. They find that projects
that use CI are more effective at merging requests from core
members, and the projects that use CI find significantly
more bugs. However, the paper explicitly states that it is a
preliminary study on only 246 GitHub projects, and treats
CI usage as simply a boolean value. In contrast, this paper
examines 34,544 projects, 1,529,291 builds, and 442 survey
responses to provide detailed answers to 14 research questions
about CI usage, costs, and benefits.

A tech report from Beller et al. [25] performs an analysis of
CI builds on GitHub, specifically focusing on Java and Ruby
languages. They answer several research questions about
tests, including “How many tests are executed per build?”,
“How often do tests fail?”, and “Does integration in different
environments lead to different test results?”. These questions
however, do not serve to comprehensively support or refute
the productivity claims of CI.

Two other papers [44,46] have analyzed a couple of case
studies of CI usage. These are just two case studies total,
unlike this paper that analyzes a broad and diverse corpus.

Leppänen et al. [45] interviewed developers from 15 soft-
ware companies about what they perceived as the benefits
of CI. They found one of the perceived benefits to be more
frequent releases. One of their participants said CI reduced
release time from six months to two weeks. Our results
confirm that projects that use CI release twice as fast as
projects that do not use CI.

Beller et al. [24] find that developers report testing three
times more often than they actually do test. This over-
reporting shows that CI is needed to ensure tests are actually
run. This confirms what one of our respondents (P287) said:

“It forces contributors to run the tests (which they might
not otherwise do)”. Kochhar et al. [42] found that larger
Java open-source projects had lower test coverage rates, also
suggesting that CI can be beneficial.
CI technology Some researchers have proposed approaches
to improve CI servers by having servers communicate depen-

dency information [31], generating tests during CI [30], or
selecting tests based on code churn [41]. Also researchers [27]
have found that integrating build information from various
sources can help developers. In our survey, we found that
developers do not think that CI helps them locate bugs; this
problem has been also pointed out by others [28].

One of the features of CI systems is that they report the
build status so that it is clear to everyone. Downs et al. [32]
developed a hardware based system with devices shaped like
rabbits which light up with different colors depending on the
build status. These devices keep developers informed about
the status of the build.
Related Technology A foundational technology for CI is
build systems. Some ways researchers have tried to improve
their performance has been by incremental building [35] as
well as optimizing dependency retrieval [29].

Performing actions continuously can also bring extra value,
so researchers have proposed several activities such as con-
tinuous test generation [54], continuous testing (continuously
running regression tests in the background) [50], continuous
compliance [36], and continuous data testing [47].

8. CONCLUSIONS
CI has been rising as a big success story in automated

software engineering. In this paper we study the usage, the
growth, and the future prospects of CI using data from three
complementary sources: (i) 34,544 open-source projects from
GitHub, (ii) 1,529,291 builds from the most commonly used
CI system, and (iii) 442 survey respondents. Using this rich
data, we investigated 14 research questions.

Our results show there are good reasons for the rise of CI.
Compared to projects that do not use CI, projects that use
CI: (i) release twice as often, (ii) accept pull requests faster,
and (iii) have developers who are less worried about breaking
the build. Therefore, it should come as no surprise that 70%
of the most popular projects on GitHub heavily use CI.

The trends that we discover point to an expected growth
of CI. In the future, CI will have an even greater influence
than it has today. We hope that this paper provides a call
to action for the research community to engage with this
important field of automated software engineering.

9. ACKNOWLEDGMENTS
We thank CloudBees for sharing with us the list of open-

source projects using CloudBees, Travis for fixing a bug in
their API to enable us to collect all relevant build history,
and Amin Alipour, Denis Bogdanas, Mihai Codoban, Alex
Gyori, Kory Kraft, Nicholas Lu, Shane McKee, Nicholas
Nelson, Semih Okur, August Shi, Sruti Srinivasa Ragavan,
and the anonymous reviewers for their valuable comments
and suggestions on an earlier version of this paper.

This work was partially funded through the NSF CCF-
1421503, CCF-1439957, and CCF-1553741 grants.



10. REFERENCES

[1] 7 reasons why you should be using continuous
integration. https://about.gitlab.com/2015/02/03/7-
reasons-why-you-should-be-using-ci/. Accessed:
2016-04-24.

[2] AppVeyor. https://www.appveyor.com/. Accessed:
2016-04-26.

[3] The benefits of continuous integration. https://
blog.codeship.com/benefits-of-continuous-integration/.
Accessed: 2016-04-24.

[4] Build in the cloud.
http://google-engtools.blogspot.com/2011/08/build-
in-cloud-how-build-system-works.html.

[5] CircleCI. https://circleci.com/. Accessed: 2016-04-26.

[6] CloudBees. http://cloudbees.com/. Accessed:
2016-04-26.

[7] Continuous integration. https:
//www.thoughtworks.com/continuous-integration.
Accessed: 2016-04-24.

[8] Continuous integration is dead.
http://www.yegor256.com/2014/10/08/continuous-
integration-is-dead.html. Accessed: 2016-04-24.

[9] CruiseControl. http://cruisecontrol.sourceforge.net/.
Accessed: 2016-04-21.

[10] CrunchBase. https://www.crunchbase.com/
organization/travis-ci#/entity. Accessed: 2016-04-24.

[11] Google Search Trends.
https://www.google.com/trends/. Accessed:
2016-04-24.

[12] Jenkins. https://jenkins.io/. Accessed: 2016-04-21.

[13] Restkit. https://github.com/RestKit/RestKit.
Accessed: 2016-04-29.

[14] Stackoverflow.
http://stackoverflow.com/questions/214695/what-are-
some-arguments-against-using-continuous-integration.
Accessed: 2016-04-24.

[15] Team Foundation Server.
https://www.visualstudio.com/en-us/products/tfs-
overview-vs.aspx. Accessed: 2016-04-21.

[16] Tools for software engineers.
http://research.microsoft.com/en-us/projects/tse/.
Accessed: 2016-04-24.

[17] Travis CI. https://travis-ci.org/. Accessed: 2016-04-21.

[18] Werker. http://wercker.com/. Accessed: 2016-04-26.

[19] Why don’t we use continuous integration?
https://blog.inf.ed.ac.uk/sapm/2014/02/14/why-dont-
we-use-continuous-integration/. Accessed: 2016-04-24.

[20] Yaml: Yaml ain’t markup language. http://yaml.org/.
Accessed: 2016-04-24.

[21] J. M. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T.
Nguyen, and T. N. Nguyen. Detecting semantic
changes in Makefile build code. In ICSM, 2012.

[22] J. Allspaw and P. Hammond. 10+ deploys per day:
Dev and ops cooperation at Flickr.
https://www.youtube.com/watch?v=LdOe18KhtT4.
Accessed: 2016-04-21.

[23] K. Beck. Embracing change with Extreme
Programming. Computer, 32(10):70–77, 1999.

[24] M. Beller, G. Gousios, and A. Zaidman. How (much)
do developers test? In ICSE, 2015.

[25] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests
broke the build: An analysis of travis ci builds with
github. Technical report, PeerJ Preprints, 2016.

[26] G. Booch. Object Oriented Design with Applications.
Benjamin-Cummings Publishing Co., Inc., 1991.

[27] M. Brandtner, E. Giger, and H. C. Gall. Supporting
continuous integration by mashing-up software quality
information. In CSMR-WCRE, 2014.

[28] M. Brandtner, S. C. Müller, P. Leitner, and H. C. Gall.
SQA-Profiles: Rule-based activity profiles for
continuous integration environments. In SANER, 2015.

[29] A. Celik, A. Knaust, A. Milicevic, and M. Gligoric.
Build system with lazy retrieval for Java projects. In
FSE, 2016.

[30] J. C. M. de Campos, A. Arcuri, G. Fraser, and R. F.
L. M. de Abreu. Continuous test generation:
Enhancing continuous integration with automated test
generation. In ASE, 2014.

[31] S. Dösinger, R. Mordinyi, and S. Biffl. Communicating
continuous integration servers for increasing
effectiveness of automated testing. In ASE, 2012.

[32] J. Downs, B. Plimmer, and J. G. Hosking. Ambient
awareness of build status in collocated software teams.
In ICSE, 2012.

[33] S. Elbaum, G. Rothermel, and J. Penix. Techniques for
improving regression testing in continuous integration
development environments. In FSE, 2014.

[34] J. Engblom. Virtual to the (near) end: Using virtual
platforms for continuous integration. In DAC, 2015.

[35] S. Erdweg, M. Lichter, and M. Weiel. A sound and
optimal incremental build system with dynamic
dependencies. In OOPSLA, 2015.

[36] B. Fitzgerald, K. J. Stol, R. O’Sullivan, and D. O’Brien.
Scaling agile methods to regulated environments: An
industry case study. In ICSE, 2013.

[37] M. Fowler. Continuous Integration.
http://martinfowler.com/articles/
originalContinuousIntegration.html. Accessed:
2016-04-21.

[38] M. Gligoric, L. Eloussi, and D. Marinov. Practical
regression test selection with dynamic file dependencies.
In ISSTA, 2016.

[39] G. Gousios. The GHTorrent dataset and tool suite. In
MSR, 2013.

[40] J. Humble. Evidence and case studies.
http://continuousdelivery.com/evidence-case-studies/.
Accessed: 2016-04-29.

[41] E. Knauss, M. Staron, W. Meding, O. Söder,
A. Nilsson, and M. Castell. Supporting continuous
integration by code-churn based test selection. In
RCoSE, 2015.

[42] P. S. Kochhar, F. Thung, D. Lo, and J. L. Lawall. An
empirical study on the adequacy of testing in open
source projects. In APSEC, 2014.

[43] V. Kuechler, C. Gilbertson, and C. Jensen. Gender
differences in early free and open source software
joining process. In IFIP, 2012.

[44] E. Laukkanen, M. Paasivaara, and T. Arvonen.
Stakeholder perceptions of the adoption of continuous
integration: A case study. In AGILE, 2015.



[45] M. Leppänen, S. Mäkinen, M. Pagels, V. P. Eloranta,
J. Itkonen, M. V. Mäntylä, and T. Männistä. The
highways and country roads to continuous deployment.
IEEE Software, 2015.

[46] A. Miller. A hundred days of continuous integration. In
AGILE, 2008.

[47] K. Muşlu, Y. Brun, and A. Meliou. Data debugging
with continuous testing. In FSE, 2013.

[48] V. One. 10th annual state of Agile development survey.
https://versionone.com/pdf/VersionOne-10th-Annual-
State-of-Agile-Report.pdf, 2016.

[49] Puppet and DevOps Research and Assessments
(DORA). 2016 state of DevOps Report.
https://puppet.com/system/files/2016-06/2016%
20State%20of%20DevOps%20Report 0.pdf, 2016.

[50] D. Saff and M. D. Ernst. Continuous testing in Eclipse.
In ICSE, 2005.

[51] Testing at the speed and scale of Google, Jun 2011.
http://google-engtools.blogspot.com/2011/06/testing-
at-speed-and-scale-of-google.html.

[52] Tools for continuous integration at Google scale,
October 2011.
http://www.youtube.com/watch?v=b52aXZ2yi08.

[53] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and
V. Filkov. Quality and productivity outcomes relating
to continuous integration in GitHub. In FSE, 2015.

[54] Z. Xu, M. B. Cohen, W. Motycka, and G. Rothermel.
Continuous test suite augmentation in software product
lines. In SPLC, 2013.

[55] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: A survey.
STVR, 22(2):67–120, 2012.

[56] S. Zhou, J. M. Al-Kofahi, T. N. Nguyen, C. Kästner,
and S. Nadi. Extracting configuration knowledge from

build files with symbolic analysis. In RELENG, 2015.


